О РАЗРЕШИМОСТИ ПО ДОПУСТИМОСТИ БИМОДАЛЬНОЙ ЛОГИКИ С N-ПЕРЕСТАНОВОЧНЫМИ МОДАЛЬНОСТЯМИ*

М.И. Голованов**

Цель данной работы - исследование допустимых правил вывода бимодальной логической системы $S5_2C_n$ с п-коммутативными модальностями, а именно: логика $S5_2C_n$ является логикой с двумя модальностями $9_0, 9_1,$ каждая из которых удовлетворяет аксиомам S5 и, кроме того, выполняются аксиомы n-коммутирования модальностей $(9_09_1)^n$ р= $(9_19_0)^n$ р. В предлагаемой работе устанавливается, что логика $S5_2C_n$ полна, финитно аппроксимируема и разрешима. Основной результат: построен алгоритмический критерий распознавания допустимости правил вывода, т.е. логика $S5_2C_n$ является разрешимой относительно допустимости правил вывода.

Определения и обозначения

Нормальной п-логикой назовем логику с п модальностями $9_1,...,9_n$, являющуюся расширением классического исчисления высказываний, полученным добавлением к аксиомам и правилам ИВ аксиом $9_i(p \rightarrow q) \rightarrow (9_ip \rightarrow 9_iq)$ (i=1,...,n) и правил $[-A \Rightarrow -9_iA(i=1,...,n)]$ и правил $[-A \Rightarrow -9_iA(i=1,...,n)]$ и возможно, некоторых дополнительных аксиом.

Пропозициональная логика S52Cn является расширением классического исчисления высказываний, при котором к логическим операторам ИВ добавляются два модальных оператора 9_0 и 9_i к логическим аксиомам ИВ добавляются аксиомы

```
\begin{array}{lll} 9_{i}(p{\rightarrow}q){\rightarrow}(9_{i}p{\rightarrow}9_{i}q), & i{=}0,1,\\ 9_{i}p{\rightarrow}p, & i{=}0,1,\\ {\Diamond}_{i}9_{i}p{\rightarrow}p, & i{=}0,1,\\ {g}_{i}p{\rightarrow}9_{i}9_{i}p, & i{=}0,1,\\ {(9_{0}9_{1})^{n}p}{\equiv}(9_{1}9_{0})^{n}p, & \end{array}
```

к правилам вывода ИВ добавляются правила $\vdash A \Rightarrow \vdash 9_i A (i=0,1)$.

Мультиструктурой Крипке (n-шкалой или шкалой) будем называть набор $\langle U, R_1, ..., R_n \rangle$, где U - непустое множество и $R_1, ..., R_n$ - бинарные отношения на множестве U.

п-моделью Крипке, или моделью Крипке, когда нет необходимости указывать число отношений, заданных на основном множестве, будем называть набор $\langle U, R_1, ..., R_n, V \rangle$, где $\langle U, R_1, ..., R_n \rangle$ - n-шкала и V - отображение, ставящее в соответствие каждой пропозициональной переменной некоторое подмножество множества U. Отображение V будем называть означиванием. Истинность n-модальной формулы A в точке t n-модели M определяется как и в одномодальном случае, в частности, $(M,t) \models 9.A$, если $>x ((t,x) \in R_i \rightarrow (M,x) \models A)$.

Пусть $\mathbf{M}_1 = \langle \mathbf{U}', \mathbf{R}'_1, \dots, \mathbf{R}'_n, \mathbf{V}' \rangle$ и $\mathbf{M}_2 = \langle \mathbf{U}'', \mathbf{R}''_1, \dots, \mathbf{R}''_n, \mathbf{V}'' \rangle$ модели Крипке. Будем говорить, что модель $\mathbf{M} = \langle \mathbf{U}, \mathbf{R}_1, \dots, \mathbf{R}_n, \mathbf{V} \rangle$ является объединением непересекающихся моделей \mathbf{M}_1 и \mathbf{M}_2 $\mathbf{M} = \mathbf{M}_1 \square$ \mathbf{M}_2 , если $\mathbf{U} = \mathbf{U}' \cup \mathbf{U}''$, $\mathbf{U}' \cap \mathbf{U}'' = \emptyset$, $\mathbf{R}_1 |_{\mathbf{U}'} = \mathbf{R}'_1$, $\mathbf{R}_2 |_{\mathbf{U}''} = \mathbf{R}''$, и $\mathbf{V}|_{\mathbf{U}''} = \mathbf{V}'$, $\mathbf{V}|_{\mathbf{U}''} = \mathbf{V}''$.

Пусть $F = \langle U, R_1, \dots, R_n \rangle$ - n-шкала и U^x - наименьшее подмножество множества U, содержащее x и удовлетворяющее условию: если $y \in U_x$ и $(y,z) \in R_i$, то $z \in U_x$. Кроме того положим $R_i^x = R_i \mid_{U^x}$. Конусом шкалы F с вершиной x назовем подшкалу $F^x = \langle U^x, R_1^x, \dots, R_n^x \rangle$.

Пусть $\mathbf{M} = \langle \mathbf{U}, \mathbf{R}_1, ..., \mathbf{R}_n, \mathbf{V} \rangle$ - n-модель и $\mathbf{x} \in \mathbf{U}$. Через $\mathbf{M}^{\mathbf{x}}$ обозначим модель $\left\langle \mathbf{U}^{\mathbf{x}}, \mathbf{R}_1^{\mathbf{x}}, ..., \mathbf{V}' \right\rangle$, где $\left\langle \mathbf{U}^{\mathbf{x}}, \mathbf{R}_1^{\mathbf{x}}, ..., \mathbf{R}_n^{\mathbf{x}} \right\rangle$ является конусом шкалы $\left\langle \mathbf{U}, \mathbf{R}_1, ..., \mathbf{R}_n \right\rangle$ с вершиной \mathbf{x} и $\mathbf{V}'(\mathbf{p}_i) = \mathbf{V}(\mathbf{p}_i) \cap \mathbf{U}^{\mathbf{x}}$.

Е будет обозначать произвольную одноэлементную модель, т.е. модель $\langle U, R_1, ..., R_n, V \rangle$, у которой основное множество U является одноэлементным. Отметим, что если число пропозициональных переменных, на которых задается означивание V, равно n, то число одноэлементных моделей равно 2^n .

Пусть For обозначает множество всех бимодальных формул. Обозначим $M_k = \{9_k \phi | \phi \in For \cup \{\emptyset_k \psi | \psi \in For \}$, где k = 0, 1. Если X - некоторое множество формул, то положим $M_k(X) = M_k \cap X$. Множество X будем называть модально полным относительно модальности 9_k , если для любой формулы $\phi \in M_k$, либо $\phi \in X$, либо $\phi \in X$.

Полнота и разрешимость логики S5₂C_п

Лемма 1. Шкала $\langle F, R_0, R_1 \rangle$ адекватна логике $L_n \Leftrightarrow$ отношения R_0, R_1 - рефлексивны, симметричны, транзитивны и удовлетворяют равенству $(R_0R_1)^n = (R_1R_0)^n$.

Доказательство. Достаточность очевидна. Необходимость докажем от противного. Пусть на рассматриваемой шкале $(x,y) \in (R_0R_1)^n$, но $(x,y) \in (R_1R_0)^n$. Введем означивание $V(p) = \{y\}$, тогда $x \Vdash_V (\lozenge_0 \lozenge_1)^n p$, но $x \not\Vdash_V (\lozenge_1 \lozenge_0)^n p$.

Лемма 2. Если $\langle F, R_0, R_1, V \rangle$ - модель адекватная логике $S5_2C_n$, и $F \not\Vdash_V \phi$, то существует конечная модель \overline{F} адекватная логике $S5_2C_n$, такая, что $\overline{F} \not\Vdash_V \phi$.

Доказательство. Пусть $\langle F, R_0, R_1, V \rangle$ - модель, удовлетворяющая условиям леммы. В силу равенства $(R_0R_1)^n = (R_1R_0)^n$ отношение $(R_0R_1)^n$ является отношением эквивалентности на множестве F, поэтому конус $F^x = \{y|(x,y) \in (R_0R_1)^n\}$, где $x \not\Vdash_V \phi$, является подмоделью модели F, удовлетворяющей условиям леммы. Профильтруем F^x по множеству подформул Φ формулы ϕ . Обозначим $[y] = \{z \in F^x | > \phi \in \Phi \ (z \Vdash \phi \Leftrightarrow x \Vdash \phi)\}$, $\overline{F}^x = \{[y]|y \in F^x\}$. Положим для i = 0, 1 и произвольных $[u], [v] \in \overline{F}^x [u] \overline{R}_i [v]$, если $> \phi \in M_i(\Phi) \ (u \Vdash_V \phi \Leftrightarrow v \Vdash_V \phi)$. Означивание W на \overline{F}^x зададим следующим: $W(p_i) = \{[y]|y \in V(p_i) \cap F^x\}$. Из определения отношения \overline{R}_i следует если $(u,v) \in R_i$, то $([u], [v]) \in \overline{R}_i$. Поскольку $> u,v \in F^x \ (u,v) \in (R_0R_1)^n$ и $(R_0R_1)^n = (R_1R_0)^n$, то $> [u], [v] \in \overline{F}^x$, $([u], [v]) \in (\overline{R}_0 \overline{R}_1)^n$ и $((\overline{R}_0 \overline{R}_1)^n = (\overline{R}_0 \overline{R}_1)^n$. Следовательно конечная модель $\langle \overline{F}^x, \overline{R}_0, \overline{R}_1, W \rangle$ адекватна логике S_2C_n . Кроме того, $[x] \not\Vdash_V \phi$.

Лемма 3. Фрейм канонической модели логики S5₂C₂ адекватен этой логике.

Доказательство. Рассмотрим каноническую модель C логики S5 $_2$ с условием $(9_09_1)^n$ р≡ $(9_19_0)^n$ р. Положим $\langle U_1, R_0^L, R_1^L \rangle$ - канонический фрейм логики S5 $_2$ С $_n$.

Положим, что для $X,Y \in U_L$ отношение $XR_k Y$ выполняется, если $M_k \cap X = M_k \cap Y$. Для удобства записи далее логику $S5_2C_n$ будем обозначать L_n . Обозначим \overline{B} логическое замыкание в логике L_n множества формул В относительно modus ponens, то есть

$$\alpha \in \overline{B} \Leftrightarrow \exists \beta_1, \dots, \beta_k \in B \ (L_x \vdash \beta_1, \dots, \beta_k \rightarrow \alpha).$$

Пусть $(X,Y) \in (R_1R_0)^n$. Положим $T_0^0 = \mathbf{M}_0(X)$, $T_{2n-1}^0 = \mathbf{M}_1(Y)$, $T_{k+1}^0 = \mathbf{M}_{[k+1]}(\overline{T_k^0})$, где [k+1] - остаток от деления k+1 на $2, k=0,\dots,2n-3$. Множества T_k^0 ($k=0,\dots,2n-1$) обладают следующими свойствами:

если
$$\phi \in T_k^0$$
, то $\phi \equiv 9_{\mathbb{R}^1} \phi$, (1)

если
$$\alpha, \beta \in T_k^0$$
, то $9_{\text{rel}}(\alpha \& \beta) \in T_k^0$. (2)

Свойство (1) следует из эквивалентностей $9_j \Diamond_j = \Diamond_j \psi$, $9_j 9_j \psi = 9_j \psi$ (j = 0, 1), поскольку любая формула $\phi \in T_k^0$ имеет вид $\Diamond_{[k]} \psi$, либо $9_{[k]} \psi$ и для модальностей логики L_n справедливы указанные эквивалентности. Пусть $\alpha, \beta \in T_k^0$, $k = 0, \dots, 2n-2$, тогда из свойства (1) и аксиом S5 следует $9_{[k]} (\alpha \& \beta) = 9_{[k]} (9_{[k]} \alpha \& 9_{[k]} \beta) = 9_{[k]} 9_{[k]} \alpha \& 9_{[k]} 9_{[k]} \beta = \alpha \& \beta$. Так как $\alpha, \beta \in \overline{T_{k-1}^0}$, то $\alpha \& \beta \in \overline{T_{k-1}^0}$ и значит $9_{[k]} (\alpha \& \beta) \in T_k^0$. Аналогично при k = 2n-1.

В последовательности, $T_0^0, T_1^0, \dots, T_{2n-2}^0$ объединение соседних множеств совместно по построению. Покажем, что $T_{2n-2}^0 \cup T_{2n-1}^0$ - совместно. Предположим $T_{2n-2}^0 \cup T_{2n-1}^0$ не совместно. Из свойств (1,2) следует $\exists t_{2n-2} \in T_{2n-2}^0$, $\exists t_{2n-1} \in T_{2n-1}^0$, такие, что $\mathbf{L}_\mathbf{n} \vdash \mathbf{t}_{2n-1} \to \mathbf{t}_{2n-2}$. Следовательно, $\mathbf{L}_\mathbf{n} \vdash \mathbf{0}_1 \mathbf{t}_{2n-1} \to \mathbf{0}_1 \mathbf{t}_{2n-2}$. Отсюда, из свойства (1) множества T_{2n-1}^0 и полноты множества Y следует $\mathbf{0}_1 \mathbf{t}_{2n-2} \in T_{2n-1}^0 \subseteq \mathbf{Y}$. Поскольку $(\mathbf{X}, \mathbf{Y}) \in (\mathbf{R}_1 \mathbf{R}_0)^\mathbf{n}$, то $(\lozenge_1 \lozenge_0)^\mathbf{n} \mathbf{0}_1 \mathbf{t}_{2n-2} \in \mathbf{X}$. Следовательно

$$X \ni (\lozenge_0 \lozenge_1)^{n-1} \lozenge_0 \lozenge_1 \mathsf{l}_{2n-2} \equiv (\lozenge_0 \lozenge_1)^n \lozenge_1 \mathsf{l}_{2n-2} \equiv (\lozenge_1 \lozenge_0)^n \lozenge_1 \mathsf{l}_{2n-2}. \tag{3}$$

Но $L_n \vdash (\lozenge_0 \lozenge_1)^{n-1} \lozenge_0 \lozenge_1 \ \, \mathbf{t}_{2n-2} \to (\lozenge_0 \lozenge_1)^{n-1} \lozenge_0 \ \, \mathbf{t}_{2n-2}$, следовательно $(\lozenge_0 \lozenge_1)^{n-1} \lozenge_0 \ \, \mathbf{t}_{2n-2} \in \mathbf{X}$. Согласно построению множества T_{k+1}^0 (k=0,...2n-3), если $t_{k+1} \in T_{k+1}^0$, то $t_{k+1} \in \overline{T_k^0}$, но тогда существует $t_k \in T_k^0$, такое, что $L_n \vdash t_k \to t_{k+1}$; значит $L_n \vdash \lozenge_{[k]} t_k \to \lozenge_{[k]} t_{k+1}$ и $\lozenge_{[k]} t_{k+1} \in T_k^0$. Применяя последнее утверждение последовательно к t_{2n-2} , $\lozenge_1 t_{2n-2}$, $\lozenge_0 \lozenge_1 t_{2n-2}$ и т.д., получим $(\lozenge_0 \lozenge_1)^{n-1} t_{2n-2} \equiv (\lozenge_0 \lozenge_1)^{n-1} \lozenge_0 t_{2n-2} \in T_0^0 \subseteq \mathbf{X}$. Последнее означает $(\lozenge_0 \lozenge_1)^{n-1} \lozenge_0 t_{2n-2} \in \mathbf{X}$, что противоречит утверждению (3).

Далее индукцией по і для $0 < i < \omega$ построим семейство множеств $T_1^i, ..., T_{2n-2}^i$, удовлетворяющее условиям

S1) в последовательности $T_0^0, T_1^i, \dots, T_{2n-2}^i, T_{2n-1}^0$, объединение любых двух соседних множеств совместно,

S2)
$$T_1^i = M_1(\overline{T_0^0 \cup T_1^{i-1}})$$
, $T_{k+1}^i = M_{[k+1]}(\overline{T_{k+1}^{i-1} \cup T_k^i})$, $k=1,\dots,2$ n-3 для четных $i>0$; $T_{2n-2}^i = M_0(\overline{T_{2n-2}^{i-1} \cup T_{2n-1}^0})$, $T_k^i = M_{[k]}(\overline{T_k^{i-1} \cup T_{k+1}^i})$, $k=1,\dots,2$ n-3 для нечетных i .

І. Пусть і - четное, множества T_1^i, \dots, T_{2n-2}^i построены и последовательность T_1^i, \dots, T_{2n-2}^i удовлетворяет условиям (S1), (S2). Множества $T_1^{i+1}, \dots, T_{2n-2}^{i+1}$ построим следующим образом:

$$T_{2n-2}^{i+1} = M_0(\overline{T_{2n-2}^i \cup T_{2n-1}^0}), T_k^{i+1} = M_{[k]}(\overline{T_k^i \cup T_{k+1}^{i+1}}), k=1,...,2n-3.$$

Покажем, что в последовательности $T_0^0, T_1^{i+1}, \dots, T_{2n-2}^{i+1}, T_{2n-1}^0$ объединение любых двух соседних множеств совместно. Объединение множеств T_{2n-2}^{i+1} и T_{2n-1}^0 совместно по предположению индукции. По построению справедливо включение $T_{2n-2}^{i+1} \subseteq \overline{T_{2n-2}^i} \cup T_{2n-1}^0$, следовательно множество $T_{2n-2}^{i+1} \cup T_{2n-1}^0$ совместно. Далее предположим k - наибольшее такое, что T_k^{i+1} несовместно, т.е. несовместно множество T_k^{i}, T_{k+1}^{i+1} . Тогда согласно свойствам (1,2) существуют $t_k \in T_k^i$ и $t_{k+1} \in T_{k+1}^{i+1}$, такие, что $L_n \vdash t_k \to |t_{k+1}|$. Но тогда $L_n \vdash 9_{[k]} t_k \to 9_{[k]} |t_{k+1}|$, следовательно $9_{[k]} |t_{k+1} T_k^i$ и $|t_{k+1} \in M_{[k+1]}(\overline{T_k^i})$ и по условию (S2) для четных і $t_{k+1} \in T_{k+1}^i \to T_{k+1}^{i+1}$ э t_{k+1}^i , что противоречит выбору t_k^i . Итак множества $t_k^{i+1}, \dots, t_{2n-2}^{i+1}$ совместны и следовательно совместны множества $t_k^{i+1} \cup t_{k+1}^{i+1}$ при $t_k^i \in \mathbb{Z}_{n-3}^{i+1}$. В самом деле, если $t_k^{i+1} \cup T_{k+1}^{i+1}$ - несовместно с t_n^i , то найдутся формулы $t_k^i \in T_k^{i+1}$, $t_{k+1}^i \in T_{k+1}^{i+1}$, такие, что $t_n^i \vdash t_{k+1}^i \to t_k^i$. Но по построению $t_k^i \in T_k^{i+1}$ и $t_k^i \in T_k^{i+1}$ и $t_k^i \in T_k^{i+1}$ и $t_k^i \in T_k^{i+1}^{i+1}$ несовместно с t_n^i , что противоречит ранее доказанному. Предположим наконец, что $t_n^i \in T_0^i$ и $t_n^i \in T_0^i$ и и последнего включения согласно (S2) и (1) имеем $t_n^i \in T_0^i$ и $t_n^i \in T_0^i$ и и последнего

II. Пусть і - нечетное, множества T_1^i, \dots, T_{2n-2}^i построены и последовательность T_1^i, \dots, T_{2n-2}^i удовлетворяет условиям (S1), (S2): $T_{2n-2}^i = M_0(\overline{T_{2n-2}^{i-1} \cup T_{2n-1}^0})$, $T_k^i = M_{[k]}(\overline{T_k^{i-1} \cup T_{k+1}^i})$, $k=1,\dots,2$ n-3.

Построение множеств $T_1^{i+1}, \dots, T_{2n-2}^{i+1}$ и соответствующие доказательства проведем симметрично (по возрастанию k).

Множества $T_1^{i+1},\dots,T_{2n-2}^{i+1}$ построим следующим образом:

$$T_1^{i+1} = M_1(T_1^i \cup T_0^0), \tag{4}$$

$$T_{k+1}^{i+1} = M_{[k+1]}(\overline{T_{k+1}^{i} \cup T_{k}^{i+1}}), \qquad k = 1, ..., 2n - 3.$$
 (5)

Покажем, что в последовательности $T_0^0, T_1^{i+1}, \dots, T_{2n-2}^{i+1}, T_{2n-1}^0$ объединение любых двух соседних множеств совместно. Объединение множеств T_0^0 и T_1^i совместно по предположению индукции. По построению справедливо включение $T_1^{i+1} \subseteq \overline{T_1^i \cup T_0^0}$, следовательно множество $T_0^0 \cup T_1^{i+1}$ совместно. Теперь покажем непротиворечивость множеств $T_2^{i+1}, \dots, T_{2n-2}^{i+1}$. Доказательство проведем от противного. Предположим k - наименьшее такое, что T_k^{i+1} - противоречиво, т.е. ввиду равенства (4) $T_k^i \cup T_{k-1}^{i+1}$ - противоречиво. Согласно свойствам (1,2} существуют $t_k \in T_k^i$ и $t_{k-1} \in T_{k-1}^{i+1}$, такие, что $L_n \vdash t_k \rightarrow t_{k-1}$. Отсюда получаем $L_n \vdash 9_{[k]} t_k \rightarrow 9_{[k]} t_{k-1}$, следовательно $t_{k-1} \in T_k^i$ и $t_{k-1} \in T_{k-1}^i$ это тротиворечит выбору t_k . Итак множества $t_k^{i+1} \in T_{k-1}^{i+1}$ совместны. Отсюда следует, что совместны и множества $t_k^{i+1} \cup T_{k+1}^{i+1}$ при $t_k^{i+1} \in T_k^{i+1}$, $t_{k+1} \in T_k^{i+1}$ несовместно с t_k^{i+1} , то найдутся формулы $t_k \in T_k^{i+1}$, $t_{k+1} \in T_{k+1}^{i+1}$, $t_{k+1} \in T_k^{i+1}$, t_{k+1}

такие, что $\mathbf{L}_{\mathbf{h}} \vdash \mathbf{t}_{\mathbf{k}} \to \mathbf{t}_{\mathbf{k}+1}$. Но по построению $T_{k+1}^{i+1} = M_{[k+1]}(\overline{T_k^{i+1}} \cup T_{k+1}^i)$. А так как по свойству (1) $\mathbf{t}_{\mathbf{k}+1} \equiv \mathbf{9}_{[k+1]}\mathbf{t}_{\mathbf{k}+1}$, то $\mathbf{t}_{\mathbf{k}+1} \in T_{k+1}^{i+1}$ и T_{k+1}^{i+1} несовместно с $\mathbf{L}_{\mathbf{n}}$, что противоречит доказанной ранее совместности T_{k+1}^{i+1} . Пусть $T_{2n-2}^{i+1} \cup T_{2n-1}^0$ несовместно с $\mathbf{L}_{\mathbf{n}}$, тогда $\mathbf{d}\mathbf{t}_{2n-2} \in T_{2n-2}^{i+1}$, $\mathbf{t}_{2n-1} \in T_{2n-1}^0$, такие, что $\mathbf{L}_{\mathbf{n}} \vdash \mathbf{t}_{2n-1} \to \mathbf{t}_{2n-2}$. Но тогда $\mathbf{L}_{\mathbf{n}} \vdash \mathbf{9}_{\mathbf{1}}\mathbf{t}_{2n-1} \to \mathbf{9}_{\mathbf{1}}\mathbf{t}_{2n-2}$, а поскольку $M_{\mathbf{1}}(\overline{T_{2n-1}^0}) = T_{2n-1}^0$, то $\mathbf{9}_{\mathbf{1}}\mathbf{t}_{2n-2} \in T_{2n-1}^0$ и $\mathbf{t}_{2n-2} \in \overline{T_{2n-1}^0}$. Из соотношения (4) вытекает включение $T_{2n-2}^i \subseteq T_{2n-2}^{i+1}$ э \mathbf{t}_{2n-2} , что невозможно ввиду совместности T_{2n-2}^{i+1} .

Из построения множеств T_k^i следует включение $T_k^i \subseteq T_k^{i+1}$ k=1,...,2n-2. Положим $T_k^{\omega} = \bigcup_{i \le \omega} T_k^i$.

Если $\varphi \in M_{[k]}(\overline{T_k^\omega \cup T_{k+1}^\omega})$, то в силу свойств (1,2) найдутся $t_k \in T_k^\omega$, $t_{k+1} \in T_{k+1}^\omega$, такие, что $L_n \vdash t_k$, $t_{k+1} \to \varphi$. В силу включений $T_k^i \subseteq T_k^{i+1}$ найдется такое j, что $t_k \in T_k^i \subseteq T_k^{2j}$, $t_{k+1} \in T_{k+1}^{2j+1}$, откуда следует включение $\varphi \in M_{[k]}(\overline{T_k^{2j} \cup T_{k+1}^{2j+1}}) = T_k^{2j+1}$, и следовательно множество $T_k^\omega \cup T_{k+1}^\omega$ непротиворечиво. Кроме того получаем включение $M_{[k+1]}(\overline{T_k^\omega \cup T_{k+1}^\omega}) \subseteq T_k^\omega$. Обратное включение очевидно. Имеем равенство $M_{[k]}(\overline{T_k^\omega \cup T_{k+1}^\omega}) = T_k^\omega$. Аналогично доказывается $M_{[k+1]}(\overline{T_k^\omega \cup T_{k+1}^\omega}) = T_{k+1}^\omega$.

Для четного і имеем $T_1^i = M_1(\overline{T_0^0 \cup T_1^{i-1}})$.

Для нечетного і $T_{2n-2}^i = M_0(\overline{T_{2n-2}^{i-1} \cup T_{2n-1}^0})$. В частности имеем $M_{[k]}(\overline{T_k^\omega}) = T_k^\omega$.

Итак в последовательности $T_0^0, T_1^\omega, \dots, T_{2n-2}^\omega, T_{2n-1}^0$ объединение соседних множеств совместно и $M_{[k]}(\overline{T_k^\omega \cup T_{k+1}^\omega}) \subseteq T_k^\omega, 1 \le k \le 2n-2.$

Лемма 4. Пусть $U_{\scriptscriptstyle 0}, \ldots, U_{\scriptscriptstyle m}$ - множества формул, удовлетворяющие условиям:

- 1) $M_{[k]}(\overline{U_k}) = U_k$, k=0,\dots,m,
- 2) $M_{(k)}(\overline{U_{k+1}}) \subseteq U_k$, $M_{(k+1)}(\overline{U_k}) \subseteq U_{k+1}$, k=0,...,m-1,
- 3) $U_k \cup U_{k+1}$ совместно с L_n, k=0,...,m-1,
- 4) множества $U_{_0}$ и $U_{_m}$ модально полны относительно $9_{_0}$ и $9_{_{[m]}}$ соответственно.

Тогда существуют множества V_0, \dots, V_m , которые удовлетворяют условиям 1)-4) леммы и кроме того $U_k \subseteq V_k$, k=0,...,m, V_{m-1} - модально полное относительно $9_{[m-1]}$.

Пусть задана некоторая нумерация формул множества $M_{[m-1]}$: ϕ , ϕ_2 ,..., ϕ_1 ,.... Положим $V_k^{\omega} = U_k$, k=0,...,m. Далее построим по индукции множества $V_0^{j\omega}$,..., $U_m^{j\omega}$, удовлетворяющие условиям 1)-4) доказываемой леммы.

Если множества $V_0^{j\omega}, \dots, = U_m^{j\omega}$ уже построены и либо $\varphi_j \in V_{m-1}^{j\omega}$, либо $\varphi_j \in V_{m-1}^{j\omega}$, то положим $V_k^{(j+1)\omega} = V_k^{j\omega}$ при $k=0,\dots,m$. В этом случае условия 1)-4) леммы выполняются по предположению индукции. Пусть $\varphi_j, \varphi_j \notin V_{m-1}^{j\omega}$ В этом случае множество $V_{m-1}^{j\omega} \cup \{\varphi_j\} \cup V_m^{j\omega}$ совместно. В самом деле, если $V_{m-1}^{j\omega} \cup \{\varphi_j\} \cup V_m^{j\omega}$ несовместно, то существуют $t_{m-1} \in V_{m-1}^{j\omega}$, $t_m \in V_m^{j\omega}$, такие, что $L_n \vdash t_m \to (t_{m-1} \to \varphi_j)$. В этом случае $t_{m-1} \to \varphi_j \in M_{m-1}(V_m^{j\omega})$ и в силу условий 1), 2) леммы имеем $\varphi_j \in V_{m-1}^{j\omega}$ в противоречии с выбором φ_j . Теперь положим $V_m^{j\omega+1} = V_m^{j\omega}$ и $V_{m-1}^{j\omega+1} = M_{m-1}(V_{m-1}^{j\omega} \cup \{\varphi_j\} \cup V_m^{j\omega+1})$. Построим далее множества $V_k^{j\omega+1} = M_{m-1}(V_m^{j\omega} \cup V_k^{j\omega+1})$, $k=1,\dots,m-2$, $V_0^{j\omega+1} = V_0^{j\omega}$.

Покажем, что множества $V_0^{j\omega+1},\dots,V_m^{j\omega+1}$ совместны. Множества $V_0^{j\omega+1}$ и $V_m^{j\omega+1}$ совместны поскольку совпадают с совместными по предположению индукции множествами $V_0^{j\omega}$ и $V_m^{j\omega}$ соответственно. $V_{m-1}^{j\omega+1}$ совместно поскольку выше была показана совместность $?\{?j\}$? . Пусть k - наибольший индекс, для которого - несовместно, т.е. $V_k^{j\omega} \cup V_{k+1}^{j\omega+1}$ - несовместно, тогда в силу свойств \ref{ti1}, \ref{ti2} $\exists t_k \in V_k^{j\omega}, \ \exists t_{k+1} \in V_{k+1}^{j\omega+1}$, такие, что $L_n \vdash t_k \rightarrow t_{k+1}$. Тогда $L_n \vdash \mathfrak{I}_{k+1} \cup t_k \rightarrow \mathfrak{I}_{k+1}$ и поскольку $\mathfrak{I}_{k+1} \cup t_k \in V_k^{j\omega}$, то $t_k \in V_k^{j\omega}$. По предположению индукции

и в силу способа построения рассматриваемой последовательности имеем $M_{[k+1]}(V_k^{j\omega})$, $V_{k+1}^{j\omega}\subseteq V_{k+1}^{j\omega+1}$, т.е. $V_{k+1}^{j\omega+1}$ несовместно, что противоречит выбору k.

Из способа построения множеств $V_k^{j\omega+1}$ следует, что множества $V_k^{j\omega+1} \cup V_{k+1}^{j\omega+1}$ при k=1,...,m-1 совместны. Покажем совместность множества $V_0^{j\omega+1} \cup V_1^{j\omega+1}$. Если это множество несовместно, то найдутся $t_0 \in V_0^{j\omega+1}$ и $t_1 \in V_1^{j\omega+1}$, для которых $L_n \vdash t_0 \to t_1$. Тогда $L_n \vdash \theta_0 t_0 \to \theta_0 t_1$. Поскольку по индуктивному предположению $M_1(\overline{V_0^{j\omega}}) \subseteq V_1^{j\omega}$ и по построению $V_1^{j\omega} \subseteq V_1^{j\omega+1}$, то $\exists t_1 \in V_1^{j\omega+1}$ и множество $V_1^{j\omega+1}$ несовместно в противоречии с ранее доказанным.

Продолжим построения по индукции. Предположим, что множества $V_1^{jo+i}, \dots, V_m^{jo+i}$ уже построены, объединение двух соседних совместно и справедливы включения $M_{k+1}(\overline{V_k^{jo+i}}) \subseteq V_{k+1}^{jo+i},$ для i четных; $M_k(\overline{V_{k+1}^{jo+i}}) \subseteq V_k^{jo+i})$ для i нечетных. Пусть i нечетное. Положим $V_0^{jo+i+1} = V_0^{jo+i}, V_{k+1}^{jo+i+1} = M_{[k+1]}(\overline{V_k^{jo+i+1}} \cup V_{k+1}^{jo+i}), k=1,\dots,m-1,$ $V_m^{jo+i+1} = V_m^{jo+i}$. Множество V_0^{jo+i+1} совместно в силу предположения индукции. Пусть k - наименьший индекс, для которого V_k^{jo+i+1} - несовместно, т.е. $V_{k-1}^{jo+i+1} \cup V_k^{jo+i}$ - несовместно, тогда в силу свойств (1,2) $\exists t_{k-1} \in V_{k-1}^{jo+i+1}, \exists t_k \in V_k^{jo+i}, \tau$ такие, что $L_n \vdash t_k \to t_{k-1}$. Тогда $L_n \vdash \theta_{[k]} t_k \to \theta_{[k]} t_{k-1}$ и поскольку $\theta_{[k]} t_k \equiv t_k \in V_k^{jo+i}, \tau$ то $t_{k-1} \in M_{[k-1]}(\overline{V_k^{jo+i}})$. По предположению индукциии в силу способа построения рассматриваемой последовательности имеем $M_{[k-1]}(\overline{V_k^{jo+i}}) \subseteq V_{k-1}^{jo+i+1}, \tau$. е. V_{k-1}^{jo+i+1} несовместно, что противоречит выбору k. Из способа построения множеств V_k^{jo+i+1} следует, что множества V_k^{jo+i+1} совместны при $k=0,\dots,m-2$. Докажем совместность множества $V_{m-1}^{jo+i+1} \cup V_m^{jo+i+1}$. Предположим противное, тогда найдутся элементы $t_{m-1} \in V_{m-1}^{jo+i+1}, t_m \in V_m^{jo+i+1}$, для которых $L_n \vdash t_m \to t_{m-1}^{m-1}$ т. т.е. $t_{m-1}^{jo+i+1} \in V_{m-1}^{jo+i+1}$ что противоречит совместности множества V_{m-1}^{jo+i+1} для которых $t_{m-1}^{jo+i+1} \in V_{m-1}^{jo+i+1}$ т. т.е. $t_{m-1}^{jo+i+1} \in V_{m-1}^{jo+i+1}$ что противоречит совместности множества V_{m-1}^{jo+i+1}

Пусть і четное. Положим $V_m^{j\omega+i+1} = V_m^{j\omega+i}$, $V_k^{j\omega+i+1} = M_{[k]}(\overline{V_k^{j\omega+i}} \cup V_{k+1}^{j\omega+i+1})$, k=m-1,...,1, $V_0^{j\omega+i+1} = V_0^{j\omega+i}$. Множество $V_m^{j\omega+i+1}$ совместно в силу предположения индукции. Пусть k - набольший индекс, для которого $V_k^{j\omega+i+1}$ - несовместно, т.е. $V_k^{j\omega+i} \cup V_{k+1}^{j\omega+i+1}$ - несовместно, тогда в силу свойств (1,2) $\exists t_k \in V_k^{j\omega+i}$, $\exists t_{k+1} \in V_{k+1}^{j\omega+i+1}$, такие, что $L_n \vdash t_k \rightarrow t_{k+1}$. Тогда $L_n \vdash 9_{[k]} t_k \rightarrow 9_{[k]} t_{k+1}$ и поскольку $y_{[k]} t_k \equiv t_k \in V_k^{j\omega+i}$, то $t_{k+1} \in M_{[k+1]}(\overline{V_k^{j\omega+i}})$. По предположению индукции и в силу способа построения рассматриваемой последовательности имеем $M_{[k+1]}(\overline{V_k^{j\omega+i}}) \subseteq V_{k+1}^{j\omega+i} \subseteq V_{k+1}^{j\omega+i+1}$, т.е. $V_{k+1}^{j\omega+i+1}$ несовместно, что противоречит выбору k. Из способа построения множеств $V_k^{j\omega+i+1}$ следует, что множества $V_k^{j\omega+i+1}$ совместны при $k=m-1,\ldots,1$. Докажем совместность множества $V_0^{j\omega+i+1} \cup V_1^{j\omega+i+1}$. Предположим противное, тогда найдутся элементы $t_0 \in V_0^{j\omega+i+1}$, $t_1 \in V_1^{j\omega+i+1}$, для которых $t_1 \vdash t_0 \to t_1$, т.е. $t_1 \in M_1(\overline{V_0^{j\omega+i}}) \subseteq V_1^{j\omega+i} \subseteq V_1^{j\omega+i+1}$, что противоречит совместности множества $V_1^{j\omega+i+1}$.

Из построения множеств $V_1^{j\omega+i}$ следует включение $V_k^{j\omega+i} \subseteq V_k^{j\omega+i+1}$, k=0,...,m. Положим $V_k^{(j+1)\omega} = \bigcup_{i<\omega} V_k^{j\omega+i}$.

Если $\phi \in M_{[k]}(\overline{V_k^{(j+1)\omega} \cup V_{k+1}^{(j+1)\omega}})$, то в силу свойств (1,2) найдутся $t_k \in V_k^{j\omega+i}$, $t_{k+1} \in V_{k+1}^{j\omega+i}$, такие, что $L_n \vdash t_k$, $t_{k+1} \to \phi$. В силу включений $V_k^{j\omega+i} \subseteq V_k^{j\omega+i+1}$ найдется такое s, что $t_k \in V_k^{j\omega+2s}$, $t_{k+1} \in V_{k+1}^{j\omega+2s+1}$, откуда следует включение $\phi \in M_{[k]}(\overline{V_k^{j\omega+2s} \cup V_{k+1}^{j\omega+2s+1}}) = V_k^{j\omega+2s+1}$, и следовательно множество $V_k^{(j+1)\omega} \cup V_{k+1}^{(j+1)\omega}$ непротиворечиво. Кроме того получаем включение $M_{[k+1]}(\overline{V_k^{(j+1)\omega} \cup V_{k+1}^{(j+1)\omega}}) \subseteq V_k^{(j+1)\omega}$. Обратное включение очевидно. Имеем равенство $M_{[k]}(\overline{V_k^{(j+1)\omega} \cup V_{k+1}^{(j+1)\omega}}) = V_k^{(j+1)\omega}$. Аналогично доказывается $M_{[k+1]}(\overline{V_k^{(j+1)\omega} \cup V_{k+1}^{(j+1)\omega}}) = V_{k+1}^{(j+1)\omega}$.

В частности имеем $M_{[k]}(\overline{V_k^{(j+1)\omega}}) = V_k^{(j+1)\omega}$.

Если теперь возьмем $V_k = \bigcup_{i < \omega} V_k^{j\omega}$, то получим семейство множеств, удовлетворяющее заключению леммы.

Применяя лемму 4 к последовательности $T_0^{\omega}, \dots, T_{2n-1}^{\omega}$, получим последовательность совместных множеств $V_0^1, \dots, V_{2n-2}^1, V_{2n-1}^1$, для которой справедливы включения $T_k^{\omega} \subseteq V_k^1 \subseteq M_{\{k\}}$, объединения двух соседних множеств совместны и множества $V_0^1, V_{2n-2}^1, V_{2n-1}^1$, модально полны относительно модальностей $9_0, 9_{[2n-2]}, 9_{[2n-1]}$ соответственно. Применяя затем лемму 4 к семейству множеств $W_0, W_1, W_2, \dots, W_{2n-3}, W_{2n-2}, W_{2n-1}$, и продолжая этот процесс далее, через 2n-2 шага получим последовательность множеств V_0^1, \dots, V_{2n-2}^1 , в которой объединение двух соседних совместно, каждое из множеств модально полное относительно соответствующей модальности и $W_0 = T_0^0$, $W_{2n-1} = T_{2n-1}^0$. Возьмем в канонической модели в качестве множества $X_{k,k+1}$ максимальное непротиворечивое множество, содержащее множество $W_k \cup W_{k+1}$ для $k=0,\dots,2n-2$. В соответствии с определением отношений R_0^L и R_1^L имеем $(X_{k,k+1}, X_{k+1,k+2}) \in R_{[k+1]}^L$, $(X_{2n-2,2n-1}, Y) \in R_1^L$, т.е. $(X,Y) \in (R_0^L R_1^L)^n$. Лемма 3 доказана.

Приведем следствия доказанной леммы и леммы 2.

Следствие 5. Формула α ∈ S5 $_2$ С $_n$ ⇔ α истинна на всех адекватных S5 $_2$ С $_n$ моделях порядка \leq 2 $^{f(\alpha)}$, где $f(\alpha)$ - число подформуль α .

Следствие 6. ЛогикаS5₂C₂ финитно аппроксимируема.

Следствие 7. Логика $S5_{2}^{2}C_{n}^{n}$ разрешима.

Следствие 8. Модель Ch_{t^2} являющаяся прямым объединением всех конечных попарно неизоморфных моделей логики $\mathrm{S5}_2\mathrm{C}_n$ является характеристической моделью этой логики.

Лемма 9.
$$\bigcap_{n<\omega} L_n = S5_2 (= L)$$
.

Доказательство. $(9_09_1)^n$ = $(9_19_0)^n$ ⇒ $(9_09_1)^k$ = $(9_19_0)^k$ для k≤n. Следовательно L_n ⊆ L_k при k≥n. Если $\alpha \notin L$, то фильтрация канонической модели L по множеству подформул sub(α) дает конечную модель M адекватную L, такую, что $M \not\models \alpha$. Так как модель M конечна и $|M| < f(\alpha)$, то $\exists n = n(\alpha)$, что $(R_0R_1)^n = (R_1R_0)^n$. Это означает, что модель M адекватна логике L_n и, следовательно, $\alpha \notin L_n$ и $\alpha \notin \bigcap_{i < \omega} L_i$.

Пусть $\alpha \not\in L$. Тогда α истинна на всех конечных моделях логики L, имеющих порядок $\le 2^{\mathrm{f}(\alpha)}$, где $\mathrm{f}(\alpha)$ - число подформул формулы α . Но для совокупности этих моделей $\exists \mathrm{n} = \mathrm{n}(\alpha)$, что $(\mathrm{R_0}\mathrm{R_1})^\mathrm{n} = (\mathrm{R_1}\mathrm{R_0})^\mathrm{n}$ для всех этих моделей. Пусть $\mathrm{m} > \mathrm{n}(\alpha)$. В соответствии со следствием \ref{crin} $\alpha \not\in L_{\mathrm{m}} \Leftrightarrow \alpha$ истинна на всех адекватных L_{m} моделях порядка $\le 2^{\mathrm{f}(\alpha)}$. Так как при $\mathrm{m} \ge \mathrm{n}(\mathrm{R_0}\mathrm{R_1})^\mathrm{m} = (\mathrm{R_1}\mathrm{R_0})^\mathrm{m}$ для любой модели порядка $\le 2^{\mathrm{f}(\alpha)}$, то все модели порядка $\le 2^{\mathrm{f}(\alpha)}$ адекватны L_{m} . Итак $\forall \mathrm{m} > \mathrm{n}(\alpha) \alpha \in L_{\mathrm{m}}$, следовательно $\alpha \in \bigcap_{n < \omega} L_n$ и $L \subseteq \bigcap_{n < \omega} L_n$. Лемма 9 доказана.

Теорема 10. Правило вывода A/B допустимо в $S5_2C_n \Leftrightarrow A/B$ истинно на всех конечных адекватных логике $S5_2C_n$ моделях **N** следующего вида

- 1) **N**=**M**□**E** или **N**=**E**,
- 2) $\forall x \in M M^x = M$,
- 3) означивание таково, что все элементы модели N являются формульными,
- 4) мощность подмодели ${\bf M}$ не больше 2^k , где k=|Sub(A/B)| число всех подформул правила A/B.

Достаточность. Пусть L_n =S5 $_2$ C $_n$. Предположим, что правило $A(p_1,...,p_m)/B(p_1,...,p_m)$ - не допустимо в S5 $_2$ C $_n$. Следовательно существуют формулы $\phi_1,...,\phi_m$, такие, что $A(\phi_1,...,\phi_m)$ ∈ L_n , $B(\phi_1,...,\phi_m)$ ∉ L_n . Введем на канонической модели $\mathbf{C}_{L_n} = \langle C_{L_n}, R_0^{L_n}, R_1^{L_n}, V_{L_n} \rangle$ новое означивание $V'(p_i)$ ={x|x| $+\phi_i$ }. В соответствии с леммой 2 существует конечная модель, удовлетворяющая условию теоремы и адекватная логике L_n , на которой правило $A(p_1,...,p_m)/B(p_1,...,p_m)$ ложно.

Необходимость. Доказательство проведем от противного. Предположим существует модель, удовлетворяющая условиям теоремы, на которой правило ложно.

Рассмотрим m-характеристическую модель Ch_f, которая является прямым объединением всех возможных конечных моделей рассматриваемой логики.

Если N=E, то введем на модели Ch_{ε} означивание $W(p_{\varepsilon})=\{x\mid x\mid -\psi_{\varepsilon}\}$, где ψ_{ε} определены следующим образом:

$$p_i$$
, $\neg p_i$, если $\mathbf{E} \not\Vdash p_i$
 $p_i \not\models \neg p_i$, если $\mathbf{E} \not\Vdash p_i$

 p_i # $\neg p_i$, если $\mathbf{E} | \mathbf{F} p_i$

Поскольку при этом означивании формулы A и B во всех точках модели Ch_f будут иметь те же значения истинности, что и на модели E, модель характеристическая и означивание формульное, то правило будет недопустимым.

Пусть существует конечная модель $N=M \square E$ с означиванием V, при котором любой элемент -формулен, $|M| \ge 1$, $\forall x \in M M^x = M \text{ и } (N \parallel_{V} A)$, $(N \not\Vdash_{V} B)$.

Модель Ch_f содержит модель N в качестве подмодели и означивание на N будет ограничением на N означивания на Ch_f . Далее удобно означивание на моделях Ch_f и N обозначать одним и тем же символом V.

Зададим на модели Ch_f формульное означивание W, при котором правило A/B будет ложно, т.е. $Ch_f \Vdash_W A(p_1, ..., p_m)$, в то время как $Ch_f \not\Vdash_W B(p_1, ..., p_m)$.

Модель **N=M** \square **E** является подмоделью модели Ch_f. Обозначим элементы подмодели **M** \square **E** как a_1, \dots, a_{k+1} , где a_1, \dots, a_{k+1} - элементы подмодели **M** и a_{k+1} - изолированная точка, т.е. единственный элемент подмодели **E**; и пусть h_1, \dots, h_{k+1} - формулы, которые выделяют элементы a_1, \dots, a_{k+1} при означивании V. Можно считать, что h_1, \dots, h_{k+1} являются конъюнкциями подформул правила A/B или их отрицаний.

Заметим, что формулы h_1, \dots, h_{k+1} являются выделяющими для a_1, \dots, a_{k+1} только внутри подмодели, но, вообще говоря, не на Ch_f . Далее положим $f_i = h_i$, ($\bigwedge_{j,j \neq i,k+1} \neg h_j$), $i = 1, \dots, k$, $f_{k+1} = \bigwedge_{j=1}^k \neg h_j$. Формулы f_1, \dots, f_{k+1} также являются выделяющими для a_1, \dots, a_{k+1} .

Рассмотрим следующие формулы:

$$g_{a} = f_{a}, (\bigwedge_{\neg (aR_{\rho})} \lozenge_{0} f_{y}), (9_{0} \bigvee_{aR_{\rho}} f_{y}), (\bigwedge_{\neg (aR_{\rho})} \neg \lozenge_{0} f_{y}), (\bigwedge_{aR_{\rho}} \lozenge_{1} f_{y}), (9_{1} \bigvee_{aR_{\rho}} f_{y}), (\bigwedge_{\neg (aR_{\rho})} \neg \lozenge_{0} f_{y}), (9_{1} \bigvee_{aR_{\rho}} f_{y}), (9_{1} \bigvee_{a$$

$$\phi_a = g_a$$
, ($\bigwedge_{x \in \mathbf{M}} (9_0 9_1)^n (f_x \rightarrow g_x)$), где $a \in \{a_1, \dots, a_k\}$.

$$\mathbf{\phi}_{a_{k+1}} = \mathbf{\phi}(\bigvee_{a \in \mathbf{M}} \mathbf{\phi}_a)$$
 Элементы $\mathbf{a}_1, ..., \mathbf{a}_{k+1}$ однозначно определяются формулами $\mathbf{\phi}_{a_1}, ..., \mathbf{\phi}_{a_{k+1}}$ в подмодели $\mathbf{M} \Box \mathbf{E}$.

Формулы $\Phi_{a_1}, \dots, \Phi_{a_{k+1}}$ позволяют перенести формульным образом означивание с подмодели $\mathbf{M} \square \mathbf{E}$ на всю модель \mathbf{Ch}_p , не изменив при этом означивания на подмодели $\mathbf{M} \square \mathbf{E}$. Будем полагать, что ограничение означивания V, заданного на модели \mathbf{Ch}_p на подмодель $\mathbf{M} \square \mathbf{E}$ совпадает с исходным означиванием на $\mathbf{M} \square \mathbf{E}$.

Построим формулы следующего вида:

$$\psi_{i} = \bigvee_{a \in N, a \parallel Vpi} \phi_{a} \ (i=1...m)$$

Теперь на $\mathrm{Ch}_{_{\mathrm{f}}}$ зададим новое означивание W таким образом: $\mathrm{W}(\mathrm{p}_{_{\mathrm{i}}}) = \{\mathrm{x} | \mathrm{x} \| \!\!\! + \!\!\!\! \psi_{_{\mathrm{i}}} \}$ Это означивание будет формульным и, кроме того, $\mathrm{W}(\mathrm{p}_{_{\mathrm{i}}}) = \mathrm{V}(\mathrm{p}_{_{\mathrm{i}}})$ на подмодели $\mathbf{M} \sqcup \mathbf{E}$. А это значит, что на подмодели сохраняется истинность следующих утверждений:

$$(\mathbf{M} \square \mathbf{E}) \Vdash_{\mathbf{W}} \mathbf{A}(\mathbf{p}_1, \dots, \mathbf{p}_m), (\mathbf{M} \square \mathbf{E}) \not\models_{\mathbf{W}} \mathbf{B}(\mathbf{p}_1, \dots, \mathbf{p}_m)$$

Докажем, что при новом означивании посылка $A(p_1,...,p_m)$ будет истинна на всей модели Ch_f (заключение $B(p_1,...,p_m)$ будет ложно, так как оно уже ложно на подмодели).

Справедлива следующая лемма:

Лемма 11. Пусть $\alpha(p_1,...,p_m)$ – бимодальная формула, и х - элемент модели Ch_f такой, что $x \Vdash_{V} \phi_a$, где $a \in M \sqcup E$. Тогда $x \Vdash_{W} \alpha \Leftrightarrow a \Vdash_{V} \alpha$. (*)

Доказательство. Будем доказывать индукцией по длине формулы α. Пусть $\alpha = p_j$. Если а $| \vdash_{\nu} p_j$, то Φ_j содержит в качестве дизьюнктивного члена ϕ_a , следовательно х $| \vdash_{\nu} \psi_i$ и в соответствии с определением означивания W х $| \vdash_{\nu} \psi_i$, и

Допустим обратное утверждение неверно, т.е. $x \Vdash_w p_j$, но $a \not\Vdash_v p_j$. По определению означивания $W x \not\Vdash_v \psi_j$, следовательно существует $b \in \{a_1, \dots, a_{k+1}\}$ такой, что $b \Vdash_v p_j$ и $x \Vdash_v \phi_b$, $b \neq a$. Если $x \Vdash_v \phi_{a_{k+1}}$, то $\forall c \in \{a_1, \dots, a_k\} x \not\Vdash_v \phi_c$, следовательно b, $a \neq a = \{k+1\}$. Так как f a и f b являются конъюнктивными членами $a \neq a = \{k+1\}$. Так как $a \neq a = \{k+1\}$ по построению формул $a \neq b = \{a_1, \dots, a_k\} x \not\Vdash_v f_b$. По построению формул $a \neq a = \{a_1, \dots, a_k\} x \not\Vdash_v f_b$, $a \neq a = \{a_1, \dots, a_k\} x \not\vdash_v f_b$, $a \neq a = \{a_1, \dots, a_k\} x \not\vdash_v f_b$, $a \neq a = \{a_1, \dots, a_k\} x \not\vdash_v f_b$, $a \neq a = \{a_1, \dots, a_k\} x \not\vdash_v f_b$, $a \neq a = \{a_1, \dots, a_k\} x \not\vdash_v f_b$, $a \neq a = \{a_1, \dots, a_k\} x \not\vdash_v f_b$, $a \neq a = \{a_1, \dots, a_k\} x \not\vdash_v f_b$, $a \neq a = \{a_1, \dots, a_k\} x \not\vdash_v f_b$, $a \neq a = \{a_1, \dots, a_k\} x \not\vdash_v f_b$, $a \neq a = \{a_1, \dots, a_k\} x \not\vdash_v f_b$, $a \neq a = \{a_1, \dots, a_k\} x \not\vdash_v f_b$, $a \neq a = \{a_1, \dots, a_k\} x \not\vdash_v f_b$, $a \neq a = \{a_1, \dots, a_k\} x \not\vdash_v f_b$, $a \neq a = \{a_1, \dots, a_k\} x \not\vdash_v f_b$, $a \neq a = \{a$

Доказательство для связок #, , \neg , \rightarrow тривиально.

Рассмотрим случай х $\Vdash_w \lozenge_i \alpha$. Пусть $K = \{z | x(R_0 R_1)^n z\}$.

- а) Положим вначале $\mathbf{a} = \mathbf{a}_{k+1}$, т.е. $\mathbf{\phi}_{a_{kk1}} = \neg (\bigvee_{\mathbf{a} \in \mathbf{M}} \mathbf{\phi}_{\mathbf{a}})$. Тогда $> \mathbf{z} \in \mathbf{K} \ \mathbf{z} | \vdash_{\mathbf{V}} (\bigvee_{\mathbf{a} \in \mathbf{M}} \mathbf{\phi}_{\mathbf{a}})$. В самом деле, пусть $\mathbf{z} | \vdash_{\mathbf{V}} \mathbf{\phi}_{\mathbf{a}}$, где $\mathbf{a} \in \{\mathbf{a}_1, \dots, \mathbf{a}_k\}$. Так как $(\mathbf{z}, \mathbf{x}) \in (\mathbf{R}_1 \mathbf{R}_0)^\mathbf{n} = (\mathbf{R}_0 \mathbf{R}_1)^\mathbf{n}$, то $\exists \mathbf{y}_i \in \mathbf{K}$, $i = 0, \dots, 2\mathbf{n}$, такие, что $\mathbf{y}_0 = \mathbf{z}$, $\mathbf{y}_2 = \mathbf{x}$ и $\mathbf{y}_0 \mathbf{R}_0 \mathbf{y}_1 \mathbf{R}_1 \mathbf{y}_2 \dots \mathbf{y}_{2n-1} \mathbf{R} 1 \mathbf{y}_{2n}$. Индукцией по і можно показать, что $> \mathbf{y}_i \exists \mathbf{c}_i \in \{\mathbf{a}_1, \dots, \mathbf{a}_k\}$, что $\mathbf{y}_i \models_{\mathbf{V}} \mathbf{\phi}_{c_i}$ что противоречит выбору \mathbf{x} , при которых $| \vdash_{\mathbf{V}} \mathbf{\phi}_{a_{k+1}}$. Следовательно в рассматриваемом случае означивание \mathbf{W} на \mathbf{K} будет постоянно, точнее $\mathbf{W}(\mathbf{p}_i) = \mathbf{K}$, если ограничение $\mathbf{V}|_{\mathbf{E}} = \mathbf{a}_{k+1}$ и $\mathbf{W}(\mathbf{p}_i) = \mathbf{S}$ в противном случае. Но это означает, что истинность любой формулы на любой точке из \mathbf{K} при означивании \mathbf{W} будет совпадать \mathbf{c} ее истинностью на \mathbf{a}_{k+1} при означивании \mathbf{V} .
- б) Пусть а≠а_{к+1}. Согласно определению истинностного значения модального оператора \Diamond_i утверждение х $\Vdash_w \Diamond_i \alpha$ означает $\exists t((xR_i^tt), (t|\vdash_w \alpha))$. Так как х $\Vdash_v \phi_a$ и ϕ_a в качестве конъюнктивного члена содержит формулу $\vartheta_i \lor ?_{aRiy} f_y$, то найдется $b \in \mathbf{M}$ такое, что aR_i^tb и $t|\vdash_v f_b$. Формула ϕ_a содержит конъюнктивный член $(\vartheta_0 \vartheta_1)^n (f_b \to g_b)$, кроме того поскольку R_0 и R_1 рефлексивны, то вместе с отношением xR_i^tt имеем $x(\vartheta_0 \vartheta_1)^n$ t, следовательно $t|\vdash_v g_b$. Из условия $(\vartheta_0 \vartheta_1)^n = (\vartheta_1 \vartheta_0)^n$ следует, что для любых $u,v \in K$ справедливо $u(R_0 R_1)^n v$ и значит для любого $u \in K$ $u|\vdash_v \bigwedge_{=} \{x \in \{\gotheraultering Algorithms (Algorithms of the properties of the prope$

Вестник КрасГУ

 \mathbf{M} } $\{(9_09_1)^n(f_x\rightarrow g_x)$. Итак имеем $(t||_V\phi_b)$, $(t||_W\alpha)$. По индуктивному предположению выполняется $b||_V\alpha$, и так как aR,b, то по определению а $||_V\phi_a$.

Обратно, пусть а \Vdash_{V} \lozenge_{i} α . Это означает $\exists b \in \{ \setminus goth M \} : (aR_{i}b)$, $(b \Vdash_{V} \alpha)$. По условию $x \Vdash_{V} \phi_{a}$, поскольку ϕ_{a} в качестве конъюнктивного члена содержит $\lozenge_{i}f_{b}$, то имеем $\exists z : (xR_{i}z)$, $(z \Vdash_{V}f_{b})$, и учитывая, что ϕ_{a} содержит конъюнктивный член $(9_{0}9_{1})^{n}(f_{b} \rightarrow g_{b})$, имеем $z \Vdash_{V} g_{b}$, что влечет $z \Vdash_{V} \phi_{b}$.

Получили (b| $\vdash_{v}\alpha$), (z| $\vdash_{v}\phi_{b}$), тогда по индуктивному предположению z| $\vdash_{w}\alpha$, следовательно х| $\vdash_{w}\delta_{i}\alpha$. Лемма доказана.

Для завершения доказательства теоремы возьмем в качестве формулы α , рассматривавшейся в лемме, посылку $A(p_1, \ldots, p_m)$ правила A/B. Формула $A(p_1, \ldots, p_m)$ истинна на модели $\mathbf{M} \setminus \mathbf{M} \setminus \mathbf{M}$ при означивании \mathbf{V} и в соответствии с доказанной леммой формула $A(p_1, \ldots, p_m)$ будет истинна на модели \mathbf{Ch}_f при формульном означивании \mathbf{W} . Из теоремы $\mathbf{10}$ вытекает следующая

Теорема 12. Логика S5₂C_n разрешима относительно допустимости правил вывода.

СПИСОКЛИТЕРАТУРЫ

- 1. Rybakov V.V., Schemes of theorems for first order theories as propositional modal logic, Abstracts of the 1992 European Summer Meeting of ASL, Veszprem, Hungary, 1992, 64.
- 2. Alexeev P.A., Golovanov M.I. Polymodal Logic S5_nC, Sut Journal of Mathematics, V.33 (1997), N. 1, pp.1-9.
- 3. Golovanov M.I. Finite Bases of Admissible Rules for the Logic S5₂C, Lecture Notes in Comp. Sci., V.1234, Eds: S.Adian, A.Nerode, Logical Foudations of Comp. Sci., Springer, 1997, pp.119-129.
- 4. Алексеев П.А., Голованов М.И. О допустимых правилах полимодальной логики $S5_n$ C, Алгебра и логика, 1997, 36(5), стр. 483-493.